硬质合金刀具长度补偿的意义
例如,要镗一个φ40mm的孔,确定要用到两把刀,先用钻头钻到φ38,再用镗刀镗到φ50mm,此时机床已经设定工件零点,而编程时一般都是让刀具快速下降到Z3.的高度开始切削,若是以钻头对刀确定工件座标系的Z原点,则钻头钻削时不会撞刀。当换上镗刀时,如果没有设定刀具长度补偿而程序中同样设定快速下降到Z3.这时当镗刀比钻头短时,就会出现镗孔镗不通的现象,而当镗刀比钻头长时就会出现撞刀。
不设定刀具长度补偿而在程序中通过修改Z地址值来保证加工零点的正确将会很容易出错,因为程序长了各段地址代码值不统一是很难检查出错误的,而且在加工的过程中若刀具磨损了需要修改程序,若一个零件加工过程中同一把刀要加工几个不同的面,那当这把刀磨损之后则要修改所有与这把刀相关的程序。而在编制程序中用上了刀具长度补偿指令之后,当刀具磨损后,只需在相应的刀具长度补偿号中修改长度补偿值就可以了,不需要再修改程序,提高了工作效率,也保证了程序的安全运行。
(1)B刀补
特点:硬质合金刀具中心轨迹的段间都是用圆弧连接过渡。优点:算法简单,实现容易。缺点:①外轮廓加工时,由于圆弧连接时,刀具始终在一点切削,外轮廓尖角被加工成小圆角。②内轮廓加工时,必须由编程人员人为的加一个辅助的过渡圆弧,且必须保证过渡圆弧的半径大于刀具半径。这样:一是增加编程工作难度;二是稍有疏忽,过渡圆弧半径小于刀具半径时,会因刀具干涉而产生过切,使加工零件报废。
(2)C刀补特点:刀具中心轨迹段间采用直线连接过渡。直接实时自动计算刀具中心轨迹的转接交点。
优点:尖角工艺性好;在加工内轮廓时,可实现过切自动预报。
两种刀补在处理方法上的区别: B刀补采用读一段,算一段,走一段的处理方法。故无法预计刀具半径造成的下一段轨迹对本段轨迹的影响 C刀补采用一次对两段进行处理的方法。先处理本段,再根据下一段来确定刀具中心轨迹的段间过渡状态,从而完成本段刀补运算处理。
硬质合金刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以'刀具'一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。绝大多数的刀具是机用的,但也有手用的。由于机械制造中使用的刀具基本上都用于切削金属材料,所以'刀具'一词一般就理解为金属切削刀具。切削木材用的刀具则称为木工刀具。
刀具的发展在人类进步的历史占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。
然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明早的文献记载是在1822年,但直到1864年才作为商品生产。
那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特殊制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。
您好,欢迎莅临金菲刀具,欢迎咨询...
![]() 触屏版二维码 |